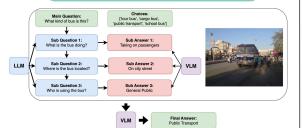


Improving Compositional Reasoning of Vision Language Models

Team 13: Busra Tugce Gurbuz, Ba Luan Dang, Oian Yang


Compositional Reasoning & Multi-Agent Collaboration

Vision-Language Models struggle with compositional reasoning breaking down complex visual tasks into simpler steps.

Like how humans talk through problems, we pair a VLM with an LLM as a collaborator.

Smarter Task Decomposition

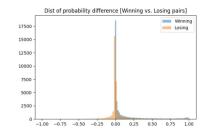
Challenges:

- LLMs not trained specifically for task decomposition
- LLMs unaware of VLM strengths & limits
- Prior work [1] fine-tuned an LLM using DPO with VLM accuracy
- as the reward, but relied on preferences generated from a general-purpose LLM, limiting the decomposers ability to specialize for the VLM.

[1] Yang, Q., Yan, W., & Agrawal, A. (2024). Enhancing Multi-Agent Multi-Modal Collaboration with Fine-Grained Reward Modeling, In Adaptive Foundation Models: Evolving Al for Personalized and

[2] Chen, C., Liu, Z., Du, C., Pang, T., Liu, Q., Sinha, A., ... & Lin, M. (2025). Bootstrapping language models with DPO implicit rewards, arXiv preprint arXiv:2406.09760.

Do Decomposed Questions Help VLMs?


Experiment-1: Idefics-2-8B + OpenHermes-2.5-Mistral-7B

Idefics-2-8B	SNLI-VE	VCR	MathVista	Average
Base MLLM	41.1	62.1	49.3	50.8
+ Chain of Thought	44.4	59.1	47.2	50.2
+ Pre-Decomposition	55	63.9	49.8	56.2
+ Interactive Decomposition	56.5	61.7	49.3	55.8
+ Interactive Decomposition with SF	56.5	63	48.3	55.9
+ Interactive Decomposition with DPO [1]	57.9	62.3	48.4	56.2

Multi-agent collaboration helps to guide weaker VLMs

Can DPO Help More?

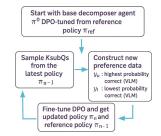
- We analyzed sub-question quality from the LLM decomposer.
- winning vs. losing sub-questions look similar.
- Sub-questions often aren't informative enough for the VLM.

Stronger VLMs Benefit More from LLM Decomposer?

Experiment-2: Idefics-3-8B / Qwen-VL-32B + OpenHermes-2.5-Mistral-7B

Idefics-3-8B / Qwen-VL-2.5-32B	SNLI-VE		vo	VCR		MathVista		Average	
Base MLLM	67.3	73.3	61.6	69.8	50.9	74.8	59.9	72.6	
+ Chain of Thought	55.2	71.3	46	71.5	50.2	76.1	50.5	73	
+ Pre-Decomposition	62.3	69.1	58.8	67.1	48.8	70.4	56.6	68.9	
+ Interactive Decomposition	60.3	-	58.1	-	51.2	-	56.5	-	
V Otron									

X Stronger VLMs perform reasoning better on their own


Stronger VLMs with Stronger LLM

Experiment-3: Qwen-VL-32B + DeepSeek-R1-Distill-Qwen-32B

Paired with stronger LLM, performance rises to match the base VLM level (71.05 on SNLI-VE).

VLM-Specialized Decomposition via Adaptive Fine-Tuning Loop

Shaping implicit DPO reward with mutual information [2]:

$$r_{\text{MI}}(\mathbf{x}, \mathbf{y}) = \beta \log \frac{\pi_{\theta}(\mathbf{y} \mid \mathbf{x})}{\pi_{\text{ref}}(\mathbf{y} \mid \mathbf{x})} + \lambda \operatorname{MI}(\mathbf{y}, \mathbf{o} \mid \mathbf{x})$$

Summary

Kev Insight:

- Multi-agent collaboration helps weaker VLMs
- Stronger VLMs require better-tuned decomposers.

Our Contributions:

- Show that Decomposition boosts mid-tier VLMs performance
- Analyze why naive DPO struggles: uninformative sub-questions
- Propose a VLM-aware adaptive fine-tuning loop for the LLMs
- Introduce MI-shaped reward for better alignment

Future Work:

Tapply proposed adaptive fine-tuning with the better starting point